Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio, working paper

نویسنده

  • Virginia R. Young
چکیده

We develop a pricing rule for life insurance under stochastic mortality in an incomplete market by assuming that the insurance company requires compensation for its risk in the form of a pre-specified instantaneous Sharpe ratio. Our valuation formula satisfies a number of desirable properties, many of which it shares with the standard deviation premium principle. The major result of the paper is that the price per contract solves a linear partial differential equation as the number of contracts approaches infinity. One can interpret the limiting price as an expectation with respect to an equivalent martin-gale measure. Another important result is that if the hazard rate is stochastic, then the risk-adjusted premium is greater than the net premium, even as the number of contracts approaches infinity. We present a numerical example to illustrate our results, along with the corresponding algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Financial Valuation of Mortality Risk via the Instantaneous Sharpe Ratio: Applications to Pricing Pure Endowments

We develop a theory for pricing non-diversifiable mortality risk in an incomplete market. We do this by assuming that the company issuing a mortality-contingent claim requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. We prove that our ensuing valuation formula satisfies a number of desirable properties. For example, we show that it is subadditive in ...

متن کامل

2 3 Ja n 20 07 Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

Abstract: We develop a theory for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Second, we appl...

متن کامل

J ul 2 00 7 Pricing Options in Incomplete Equity Markets via the Instantaneous Sharpe Ratio

Abstract: We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is...

متن کامل

Fe b 20 08 Valuation of Mortality Risk via the Instantaneous Sharpe Ratio : Applications to Life

We develop a theory for valuing non-diversifiable mortality risk in an incomplete market. We do this by assuming that the company issuing a mortality-contingent claim requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. We apply our method to value life annuities. One result of our paper is that the value of the life annuity is identical to the upper go...

متن کامل

The Uncertain Mortality Intensity Framework: Pricing and Hedging Unit-Linked Life Insurance Contracts

We study the valuation and hedging of unit-linked life insurance contracts in a setting where mortality intensity is governed by a stochastic process. We focus on model risk arising from different specifications for the mortality intensity. To do so we assume that the mortality intensity is almost surely bounded under the statistical measure. Further, we restrict the equivalent martingale measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007